On Monic Gröbner Bases in Free Algebras over Rings Stemming from Bergman’s Diamond Lemma

نویسنده

  • Huishi Li
چکیده

Let R be an arbitrary commutative ring and R〈X〉 = R〈X1, ..., Xn〉 the free algebra of n generators over R. Note that Bergman’s diamond lemma characterizes the resolvability of ambiguities of monic relations of the form Wσ − fσ with fσ a linear combination of monomials ≺ Wσ, where ≺ is a semigroup partial ordering on 〈X〉; and that in the algorithmic language of Gröbner basis theory over a ground field K, the diamond lemma had been translated into the implementable termination theorem. Here we bring the termination theorem over R into play so that monic Gröbner Bases in R〈X〉 may be verified in an effective way, though it does not necessarily yield a noncommutative analogue of Buchberger Algorithm in such a setting. This enables us to recognize that many important algebras over rings may have Gröbner defining relations, and thereby enables us to study such algebras via their N-leading homogeneous algebra and BR-leading homogeneous algebra.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gröbner–Shirshov Bases for Irreducible sln+1-Modules

In [10], inspired by an idea of Gröbner, Buchberger discovered an effective algorithm for solving the reduction problem for commutative algebras, which is now called the Gröbner Basis Theory. It was generalized to associative algebras through Bergman’s Diamond Lemma [2], and the parallel theory for Lie algebras was developed by Shirshov [21]. The key ingredient of Shirshov’s theory is the Compo...

متن کامل

Gröbner Bases for Operads

We define a new monoidal category on collections (shuffle composition). Monoids in this category (shuffle operads) turn out to bring a new insight in the theory of symmetric operads. For this category, we develop the machinery of Gröbner bases for operads, and present operadic versions of Bergman’s Diamond Lemma and Buchberger’s algorithm. This machinery can be applied to study symmetric operad...

متن کامل

Gröbner-Shirshov Bases for Associative Algebras with Multiple Operators and Free Rota-Baxter Algebras

In this paper, we establish the Composition-Diamond lemma for associative algebras with multiple linear operators. As applications, we obtain Gröbner-Shirshov bases of free Rota-Baxter algebra, λ-differential algebra and λ-differential Rota-Baxter algebra, respectively. In particular, linear bases of these three free algebras are respectively obtained, which are essentially the same or similar ...

متن کامل

Relative Gröbner–shirshov Bases for Algebras and Groups

The notion of a relative Gröbner–Shirshov basis for algebras and groups is introduced. The relative composition lemma and relative (composition-)diamond lemma are established. In particular, it is shown that the relative normal forms of certain groups arising from Malcev’s embedding problem are the irreducible normal forms of these groups with respect to their relative Gröbner–Shirshov bases. O...

متن کامل

Composition-Diamond lemma for λ-differential associative algebras with multiple operators

In this paper, we establish the Composition-Diamond lemma for λ-differential associative algebras over a field K with multiple operators. As applications, we obtain Gröbner-Shirshov bases of free λ-differential Rota-Baxter algebras. In particular, linear bases of free λ-differential Rota-Baxter algebras are obtained and consequently, the free λ-differential Rota-Baxter algebras are constructed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009